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Solicitation Purpose (GFO-16-507)

» California Energy Commission funded research to develop
advanced engine efficiency improvement technologies for HD
natural gas vehicles

— Necessary to support California’s air quality improvement and
green house gas reduction initiatives

* Current natural gas engines are 10-20% less efficient compared
to heavy duty diesel

— Stoichiometric NG engines have potential for near zero NO,
emissions
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SwRVI’s Solution

* SwRI proposed D-EGR on a Cummins ISX-12G engine combined
with an advanced ignition system, charge motion development and
high efficiency turbo as a potential solution

" Previous SwRI research
— D-EGR IR project on ISX-12G
* Showed D-EGR potential, but without efficiency improvement

* Engine was dilution limited and could not run rich enough to gain
benefit from hydrogen production

* Did not take advantage of compression ratio increase possible with
higher dilution levels

— CARB Low NOx
* Demonstrated 0.02 g/bhp-hr NO, on ISX-12G
* Slight efficiency penalty due to rich bias
— Follow-on work project gained most of efficiency loss back
— HEDGE
* Engine was less dilution tolerant than expected

— Combustion visualization showed early flame staying centered
about spark plug
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Project Goals and Objectives

= Goals:

— 10% efficiency gain over base engine
— 0.02 g/bhp-hr NO,

* Objectives
— Extend dilution limit through the use of advanced ignition
systems
* Rank ignition system performance benefit
— Extend dilution limit through combustion system development
* Swirl flow field not ideal for spark ignited combustion
— Increase compression ratio

— Reduce pumping work through optimization of turbocharger
hardware and EGR delivery method
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SwRI Design for Dilute Operation

* SwRI lessons learned through the years to extend dilution
tolerance
— High energy ignition systems
* Faster 0-2% MFB reduced variability in the early flame kernel
development

— Improve burn-rates through chemical enhancement
* H, has significant impact on 10-90% MFB
— High level of TKE

* High tumble ports Challenge for NG engines
« Low B/S ratio (<0.85) converted from HD Diesel

— High CR

* Balance knock/stability limit
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D-EGR on Natural Gas

* Natural Gas D-EGR engine (6 cylinders)

Mixer
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Benefit of Reformate
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Dilution tolerance enabled by |% H, is significantly better than without H,
— EGR tolerance
— Combustion stability
— Combustion efficiency
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Flame Speed and Stability with D-EGR
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Reformate improves

e Dilution tolerance

e Laminar flame speed
e |nitial kernel formation

MFB 10-90 [CAD]

Result

e Improved stability
e Improved robustness

e Improved M mp
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NG Hydrogen Potential
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Previous SWRI Internal Research
HD NG D-EGR (ISX-12G)

= Efficiency gains were small

= Dedicated cylinder equivalence ratio was lower than desired

— Limited by combustion stability with 33% EGR and rich operation
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Project Plan

Reduce Charge Motion Increase
Heat Development Burn
Transfer Rates

Improved

Efficiency

Increase Reduce
Dilution Pumping
Tolerance Work
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Potential Areas for Improvement

" Piston has large amounts of squish to generate turbulence needed for fast
burn rates

— Open bowl piston design will reduce heat transfer
* Charge motion / ignition system needs to improve burn rates
" Turbo matching

— D-EGR cylinders act as EGR pump; turbine does not need to be sized to
provide the pressure ratio necessary to flow EGR
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Charge Motion Development

* Acquire optical combustion data to calibrate baseline CFD
model
= Refine port / piston design
— Reduce swirl / Increase tumble
* Limited by flat head design

— Turbulent ignition system will reduce the required turbulence
generated by combustion chamber

— Obijective is to have flame drift towards exhaust valve

Increasing O

W=28.0+/-1.0ms
V=11+-13 m/s
Beta = -121.3 +/- 102.5

W=30+-02mis
V=0.0+-01m's
Beta =21.9 +/- 99.4 deg

Mean Velocity +/-

Mean Velocity +/-
Range 0.0 - 16.0 m/s

Range 0.0 - 16.0 m/s
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Optical Combustion — LSPI Setup

= Optical setup includes larger
optics

— ~Imm optics to ~5mm optics

Typical configuration of a commercial
borescope input optical lens. Size constrained
by borescope design and cooling requirements

" Increased light throughput
demonstrated compared to
commercial borescope

A through hole in the cylinder head
provides space for the updated

borescope with larger optical
components

Port for Laser
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Optical Combustion - LSPI

Normal Combustion LSPI Cycle
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General Methods for Improving Ignition

Systems

mmm Reduce / overcome HT losses in the gap

» High power and/or high energy systems

* Long duration discharges (continuous or discontinuous)
* Volumetric devices

* Large gap spark plugs

mmm Couple with the flow field

* Long duration discharges
* Indexed spark plugs or custom gaps

mmmm |Mmprove robustness

* Repeatable events

* High power / high energy systems
* Jet or torch type systems

* Long duration discharges
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Technologies for Improved Ignition

= Spark plug hardware
— Fine center electrodes
— Large gaps
— Design for low heat transfer plugs
= “Traditional” coil designs
— Long duration, single discharge units
— Multi-strike applications
— Continuous discharge systems
« DCO
* Others as shown at
IAV Ignition Conference
= Unique or non-traditional designs
— Pre-chamber
* Fuelled (with or without air)
* Un-fuelled
— RF discharge
* Corona
— Plasma jet

— Railplug

— Continuous discharge systems
* A/C Ignition
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Advanced Ignition System

Previous SWRI Evaluation
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Higher energy levels resulted in
increased performance
— High energy levels overcome
heat transfer losses
Large initial flame areas yielded
significant improvements in
flame development speed

— Jet / torch style plugs yielded
improved initial burn rate

Increasing spark duration had a
beneficial effect

Dual fine wire design was the
best of “traditional” igniters

Not all technologies
transferred to engine

— Challenged by charge
motion, scavenging, etc.
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Areas of Improvement

12%
Improve .
CombustionlOA’
Efficiency
8%
Reduce
Heat
Transfer 6%
Increase 4%
CR
Reduce 2%
Pumping
Work
0%

Efficiency Improvement
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Conclusions

= SwRI plans to take a systems level approach to improve losses at a
fundamental level and increase overall efficiency by 10%

— Improve combustion efficiency
* H, from D-EGR operation
* Reduces squish piston

— Reduce heat transfer
* Increased dilution tolerance via advanced ignition systems
* Charge motion development

— Increase CR

* Increased dilution tolerance via advanced ignition systems and charge
motion development

* Increased burn rates via H, from D-EGR operation

* Reduced back pressure from advanced turbocharger
— Reduce pumping work

* Advanced turbocharger

* Reduced TKE from charge motion
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Question and Answer

" Project Manager
— Michael Kocsis

— michael.kocsis(@swri.org
— (210) 522-3751
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